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A method is proposed for optimally planning an experiment to identify ~he thermal 
conductivity of solids with the mathematical apparatus of the sensitivity func- 
tion. 

A broad group of methods of determining the temperature dependence of ~he thermal con- 
]uctivity l(t) of solids is based on solving inverse problems of transient heat conduction. 
One of the effective methods of solving these problems is parametric identification, in which 
the structure of the mathematical model describing the heat transfer in a given body is 
assumed to be reliably known except for the form of the l(t) relation and the latter can be 
approximated with a generalized polynomial in t [i]o The constant coefficients I. in this 

J 
r 

oolynomial~, combined into the vector I = [l~]j=~,3 are the object of parametric identifica- 

tion. The form of the generalized polynomial is chosen on the basis of a priori data on the 

characteristics of the sought function l(t). In these authors ~ view, it is preferable to 
use B-splines universal with respect to the form of the l(t) relation: an economical and 
highly accurate approximation approaching the values of that function as well as its deriva- 
tives of appropriate order. ~ghen using first-order splines~ for instance~ we have 

r 
(t) = "k %J Sp (t), 

]=1 

Sp (0 : { 
< 0 fo~ lEt>l, 

> 
wlnere $=k--/,q-] is the dimensionless argument of the spline-function Sp(t) and k is a 

segment of the spline-approximation. In this case the coefficients l o are equal to the 
J 

values of function l(t) at the approximation nodes. 

An approximation with first-order splines of a typical temperature dependence of ther- 
mal conductivity l(t) and specific heat c(t), for AI=03 ceramic over the 290-1370~ tempera- 
ture range, has been constructed in Fig. 1 with six segments and s = 180~ 

The problem of parametric identification of l(t) reduces to optimal estimation i of the 

vector of sought parameters I from temperature readings yi(r) = ti(r) + si(r) at discrete 

points (i = i, ..., m) of the given body, these readings containing a measurement noise e. (z) 
i 

and being combined into the mes suremen~ vector Y(~) [[{(~') l'n ---- j~=~ o For discrete instants of 

time T k = kAT in AT steps we have Y~:=Y(zk)=[ym]~z:~, ~=] ...... #J The term '~optimum estimates ~ 

is introduced as a reflection of the fact that from the results of measurement, which are 

always a random quantity, one can a~ any instant of time only estimate the sought vector of 
parameters but not determine its true values~ Accordingly~ estimates are regarded as opti- 
mum ones when they are good (unbiased, reliable, and sound). 
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Fig. 2 

Fig. i. Approximation of temperature dependences %(t) (curve i) 
and c(t) (curve 2) with first-order B-splines: X (W/m.K), 
c (J/kg.K), t (~ 

Fig. 2. Schematic diagram of specimen (a); temperature at 
various points of specimen as function of time and change of 
sensitivity UTj k (K/W/m.K) of temperature of block No. 7 to 

change in sought coefficients %. during heating process (b): i) 
3 

U~ik; 2) U72k; ...; 7) U77k; 8) and 9) boundary conditions of 

first kind; i0) temperature of block No. 7; T (K) o 

The most widely used universal method of determining ~ is minimization of the quadratic 
discrepancy function 

N N 

(Z) ~ [Y4 -- Th (Z)] r [Yh -- T4 (~)] = ~ {[Y14 -- t~ (Z)] 2 q-... + [Ymk -- tm~ (Z)]2}, 
h = l  4=1 

with respect to ~, where components Yjk(%) of the so-called prediction Th(~)=[~k(~)]/~--i of the 

measurement vector correspond to components of the latter and can be calculated as function of 

the sought parameters ~ by any appropriate method according to the reference model of heat 
transfer. 

Inasmuch as this procedure is an ingredient in the solution of the ill-conditioned origi- 
nal inverse heat-conduction problem, one can expect various difficulties all the way to the 
obtainment of ambiguous and/or unstable final results. In substance this has to do [2] with 
the peculiarities in the form of the function ~(X) in the space of sought parameters % (exis- 
tence of several global or local extrema, saddle points or other singularities, ambiguity, 
and flatness within the range of true X values), which give rise to instability when the pri- 
mary measurements are noisy. A way out of such a situation is, on the one hand, to use al- 
gorithms with regularizing properties [3] and, on the other hand, to control the form of 
function r during design of the experiment for the purpose of eliminating or mitigating 
those peculiarities [i]. 

The possibility of control derives from the fact that the function r depends on the 
characteristics of heat transfer in a given body and on the number r of sought coefficients 
in the approximation [i] as well as on all significant factors comprising the technology of 
the experiment: number m of points in the body and their locations at which the temperature 
is measured (structure of the measurement vector), quality of the recording equipment deter- 
mined, in the first approximation, by the dispersion of noise 02 (assuming a normal noise), 
number N of measurements made throughout the entire interval ~N' power and mode of heating 

(cooling), which determine the boundary conditions for the heat transfer. 

Assemblage of these factors can be categorized as optimal planning of parametric iden- 
tification of thermal conductivity. According to the earlier proposal [i], such a planning 
requires a test for uniqueness of the solution to the parametric identification problem, 
the condition for its uniqueness being the existence of a unique global minimum of function 
~(%) corresponding to the true values of the sought parameters % = %o. When alongside such a 
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global minimum there are also several local ones, however, then there must be available a 
method of extremum search capable of revealing the global minimum among all the others. 
When negative results are obtained, then it becomes necessary to resort to variation of 
those factors. 

Such an active planning includes an analysis of the influence of significant factors 
in the experiment on the maximum attainable accuracy of % determination, this analysis re- 
quiring that an (r • r) matrix be constructed on the basis of a priori data on %(t) whose 
elements are functions describing the sensitivity of temperature readings to changes in the 
sought coefficients of the %(t) approximation (r denoting the number of sought coefficients): 

A __ 

m =m 

N U 2 "~ Uir~Uilh 
i l h  . . . . . .  

i = 1  h ~ l  i = 1  h ~ l  

"N 
. . . . .  2 

i = 1  h ~ l  i = 1  h = l  J 

(2) 

Here U~:~ = - ~ t ~ ( @ o )  is the sensitivity function of the i-th reading for sensitivity to 

change in the j-th sought parameter at the k-th instant of time (i = i, ..., m; j = i, ..., r; 

k = i, ..., N), a universal numerical method of determining which will be now presented. 

From known A and dispersion ~2 of the measurement noise can be constructed the (r • r) 
matrix of errors of optimum estimates X [i] 

P (~) = o2A -1. (3) 

The maximum accuracy of ~ determination is related to the quadratic form %oTA%o describing a 

multidimensional ellipsoid in the vicinity of %o which represents the joint confidence re- 

gion [4]. In this region lie, with a known confidence coefficient which depends on ~2 arid 

N, the estimates ~ as results of identification. The shape of this region is quali- 

tatively characterized by the A-matrix eigenvalnes and eigenvectors. By projecting this 

multidimensional ellipsoid onto the coordinate axes in the X-space, one obtains the confi- 
dence limits of the estimates [4]. 

In the first approximation this analysis is confined to consideration of the matrix 

P(~), its diagonal elements representing the dispersion o~. of the estimates of the sought 
J 

parameters %. and its other elements representing the correlations between those estimates. 
J 

In this way, the basic stage in planning the determination is selection of the afore-- 
mentioned factors of the experiment following a quantitative analysis of the P(X)-matrix or 
of the region of joint confidence, the shape of that region being determined by the A-matrix. 
The planning can be executed by known methods in theory of optimal planning [5] as well as 
in the dialog mode by direct scanning of possible variants of experimentation. 

We will demonstrate the proposed method on the specific optimal planning of identifica- 
tion, over the 290-1370~ temperature range, of thermal conductivity %(t) of a high-tempera- 
ture ceramic with properties close to those of Al2Os. Heat transfer in a cylindrical speci- 
men 18 mm long and 18 mm in diameter is in the experimental setup effected by feeding a 
thermal flux qz from a flat graphite heater to one base of that cylinder and extracting a 
thermal flux q2 from its other base through guard rings made of the same material, with addi- 
tional heating along the sides. The magnitudes of the thermal fluxes q~ and q2 as well as 
their variation in time can be stipulated as necessary. As boundary conditions, during the 
experiment are measured the temperatures of the base surfaces as well as the temperature at 
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Fig. 3. Dependence of rms relative errors ~I. (%) on some fac- 
3 

tors of experiment with single temperature probe: i) o 2 = 100~ 2, 

2) 02 = 10~ 2, 3) o 2 = I~ 2 for block No~ 3; 4) o 2 = 10~ 2 for 

block No. 5; N = 120, q~ = 3"105 W/m 2, n is order of spline co- 
efficients. 

Fig. 4. Dependence of rms relative errors 61. (%) on some fac- 
3 

tors of experiment with two temperature probes: I) o 2 = 100~ 

2) o 2 = 10~ 2 for blocks No. 3 and No. 6 with N = 60 and ql = 

3"105 W/m2; 3) o 2 = i0~ = for blocks No. 3 and No~ 6 with N = 

60 and q~ = 1.3"106 (i -- e -pT) W/m s (p = 18"i0-3). 

one point or several points along the lateral surface. The experimental specimen is shown 
schematically in Fig. 2a. 

The object of planning the given experiment is the ensemble of the following factors: 
laws of heating q~ and q2, number and locations of temperature probes along the specimen, 
interval T N of recording of signals from a temperature probe (or number of measurements N), 

and accuracy of recording channels characterized by the dispersion o 2 of noise. Bases for 
planning are, in addition to the just described fundamental thermal scheme of the experiment, 
also a priori stipulated functions X(t) and c(t), with their spline-approximations in six seg- 
ments appropriately indicated. It is noteworthy that, according to studies made by these 
authors, the fundamental conclusions and the results of planning do not depend, for all prac- 
tical purposes, on the degree of accuracy with which l(t) has been stipulated. Function c(t) 
in the experiment is, at the same time, assumed to be known. 

Under consideration were two realistic variants of stipulating the boundary conditions:(I) 

qj=q01[1--exp(--p~)] and q2 = 0; (iI) ql = qo2 and q2 = 0. The quantities qo:, qo2, and p had 

been selected so as to ensure heating of the specimen up to 1300-1400~ within approximately 
the same time of 250 sec in each case. 

For determining the boundary conditions of the first kind and constructing the sensitivity 
function were used numerical means of solving the original equation by the method of elimina- 
tion with the number of blocks equal to ii. The sensitivity function Ui~ kJ was evaluated 
according to the relation 

I 

The evaluation consisted of calculating the temperature trend in the i-th block at the hypo- 
thetical location of the temperature probe corresponding to the true lj0. Then an increment 

AI, of I. was stipulated and the temperature trend was again calculated. The difference be- 
O J 

., which yielded N values of Uij k in time tween both trends was referred to the value of 13 

(k = 1, ..., N). 
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In the calculations made by these authors AI. was made equal to 1-3% of %~. The graph 
3 3 

in Fig. 2b depicts boundary conditions of the first kind and the sensitivity function UTjk 

for the temperature tTk of block No. 7 in variant iI (qo2 = 3"i0 s W/m2). 

In describing the optimal planning of this experiment we will analyze only the results 

2 of l~ estimates, i.eo the diagonal elements of the P(%j)- pertaining to the dispersion olj J 

matrix, which had been constructed by a certain numerical method of inverting the A-matrix 

with respect to Uij k, In the process were evaluated the rms relative errors of determina- 

tion of the sought parameters, the calculations being made according to the relation 

6~,j = ~2_: .  100 [%]. (5) 

Optimization of the errors 6%. has yielded the ensemble of all earlier-enumerated factors in 
J 

the experiment. Let us show here some quantitative fragments of the planning procedure which 
will reveal its mechanism. 

The graph in Fig. 3 depicts values of ~%, for various values of o 2 pertaining to one 
J 

temperature probe installed in block No. 3. It is evident here that the errors increase by 

1-2 orders of magnitude (the rms error increasing from +I~ to +10~ as the noise level in 
the original readings rises. 

A comparison of curves 2 and 4 in Fig. 3 reveals that the errors depend heavily on 
where the temperature probe is located along the specimen. In both variants, moreover, this 
dependence is most significant for the first few coefficients %1-%5 of splines. 

Addition of another temperature probe greatly reduces the errors, as revealed by a 
comparison of curves 1 and 2 in Figs. 3 and 4 (with temperature probes in blocks No. 3 and 
No. 6)~ It appears that using one temperature probe in block No. 5 for N = 120 measurements 
with o 2 = 10~ 2 ensures approximately the same accuracy as using two temperature probes in 
blocks No. 3 and No. 6, respectively, with much less severe requirements imposed on the 
information (02 = 100~ 2 and N = 60). 

A comparison of curves 2 and 4 in Fig. 4 reveals also that variant II of heating the 
specimen is preferable to variant I, especially for determination of the coefficients %1-%5. 

We have thus described a method of optimally planning an experiment for parametric 
identification of thermal conductivity. This method makes it possible, on the basis of a 
priori information, to assemble the values of all significant factors in the experiment~ For 
illustration we have shown the main results of optimally planning the identification of ther- 
mal conductivity of a high-temperature ceramic through approximation of %(t) with first-order 
B-slines. 
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